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Abstract—Energy Efficiency is becoming a key factor in
software development, given the sharp growth of IT systems
and their impact on worldwide energy consumption. We do
believe that a quality process infrastructure should be able
to consider the Energy Efficiency of a system since its early
development: for this reason we propose to introduce Energy
Efficiency into the existing quality models. We selected the
SQALE model and we tailored it inserting Energy Efficiency
as a sub-characteristic of efficiency. We also propose a set of
six source code specific requirements for the Java language
starting from guidelines currently suggested in the literature.
We experienced two major challenges: the identification of
measurable, automatically detectable requirements, and the
lack of empirical validation on the guidelines currently present
in the literature and in the industrial state of the practice
as well. We describe an experiment plan to validate the
six requirements and evaluate the impact of their violation
on Energy Efficiency, which has been partially proved by
preliminary results on C code. Having Energy Efficiency in a
quality model and well verified code requirements to measure
it, will enable a quality process that precisely assesses and
monitors the impact of software on energy consumption.
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I. INTRODUCTION

The rapid growth and significant development of In-
formation Technology (IT) systems has started to cause
an increase of worldwide energy consumption [1]. This
issue moved technology producers, information systems
managers, and researchers to deal with energy consumption
reduction [2]. For this reason, research has increasingly
focused on improving the Energy Efficiency of hardware,
but the literature still lacks in quantifying accurately the
energy impact of software. Software does not consume
energy directly, however it has a direct influence on the
energy consumption of the hardware underneath. As a matter
of fact applications and operating systems indicate how
the information is processed and, consequently, drive the
hardware behaviour. Considering each IT device, it has its
own theoretical energy consumption, which can range from
0, when it is turned off, to x if all its internal components are
used simultaneously. Through the management of each part
there is a variation ∆x of its consumption that is between 0
and x. The management of system components can be done
either in hardware or software. Previous work [3] suggested

Figure 1. IT devices sale forecasts

that software can reach up to 10% of the total system power
(measured as the difference between an idle activity, used
as a baseline, and the most power-consuming scenario).
This figures ought to be taken into account especially when
considering mobile environments and data centers. Mobile
handsets sales are increasing sharply [4] (see Fig. 1) and
this class of devices have to deal with battery-related issues,
so energy savings can impact significantly on the device
autonomy. On the other hand, small energy reductions in
data centers can result in big energy savings: for example,
just in 2009, data centers consumed about 330 TWh [5].

Having regard to the influence of software in energy con-
sumption, it is necessary to quantify the Energy Efficiency
of source code. For this reason, we envision a software
quality model that includes Energy Efficiency in order to
take it into account as a key aspect during the software
development and utilization. Having in mind this scenario,
we suggest the usage of the Software Quality Assessment
based on Lifecycle Expectations (SQALE) model [6] to
include Energy Efficiency as a measurable quality attribute.
This paper is organized as follows. Section II describes
SQALE methodology. Section III discusses the adaptation of
SQALE quality model to include Energy Efficiency. Section
IV introduces a software framework for Requirements Em-
pirical Validation. Section V presents our conclusions and
future work.

II. SQALE

SQALE [6] is a methodology to support the evaluation of
the software quality. It is applicable to any software artifact
(such as code, UML models, documentation, and so on),
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Figure 2. Hierarchical quality model structure

however the main focus is on source code, whose quality is
perceived as a non functional requirement. The goal of using
SQALE is to quantitatively assess the distance between the
code current quality and its expected quality objective. To
achieve that, the following main concepts are introduced:

1) A quality model
2) An analysis model
3) Indices and Indicators

A. Quality model

The quality model proposed by SQALE is an orthog-
onal quality model derived from the ISO/IEC 9126 [7]
(revised by the ISO/IEC 25010 [8]) . It is organised in
three hierarchical levels, which are represented in Fig. 2.
The first level is composed of characteristics that are based
on the theoretical lifecycle of a source file and are from
the ISO 9126 standard. They depend on the code internal
properties and directly impact the typical activities of a
software application’s lifecycle. Characteristics are listed
in the order they appear in a typical software application
lifecycle: Testability, Reliability, Changeability, Efficiency,
Security, Maintainability, Portability, Reusability.

The second level is composed of sub-characteristics,
based on sub activities and requirements domain. There
are two types of sub-characteristics: those corresponding
to lifecycle activities (e.g., unit test, integration test), and
those resulting from taxonomies in terms of good and bad
practices relating to the software’s architecture and coding.
A sub-characteristic is attached to only one characteristic,
the first in the chronology of the characteristics (to preserve
orthogonality). The third level is composed of requirements
that relate to the source code’s internal attributes. These
requirements usually depend on the software’s context and
language, and they are also attached to the lowest possible
level, i.e. in relation to the first quality characteristic to
which it chronologically contributes. In this way orthogo-
nality is preserved also at the bottom level. Requirements
relate to the artifacts that compose the software’s source
code, e.g. software applications, components, files, classes,
and so forth. TABLE I is excerpt from the SQALE standard
[6] and it contains examples of how requirements in the
Java language are inserted in the structure of characteristics
and sub-characteristics. Fig. 3 represents graphically the
hierarchy.

B. Analysis model

The SQALE Analysis Model contains the rules to nor-
malize and control measures relating to the code. For each

TABLE I
EXAMPLE OF SQALE MODEL FOR JAVA LANGUAGE, FROM [6]

Characteristic Sub-characteristic Generic Requirement
Description

Maintainability Understandability File comment ratio >
35%

Maintainability Readability File size (LOC) < 1000

Maintainability Readability No commented-out code

Efficiency RAM related
efficiency

Class depth of inheritence
(DIT) < 8

Efficiency RAM related
efficiency

No unused variables, pa-
rameter or constant in code

Changeability Logic related change-
ability

If, else, for, while struc-
tures are bound by scope

Reliability Fault tolerance Switch statements must
have a default condition

Reliability Data related reliability No use of unitialized vari-
ables

Testability Integration level testa-
bility

Coupling between objects
(CBO) < 7

Testability Unit Testing
testability

No duplicate part over 100
token

Testability Unit Testing
testability

Number of parameters in a
module call (NOP) < 6

Testability

Reliability

Changeability

Efficiency

Maintainability

Unit testing testability

Integration level 
testability

Data related reliability

Fault tolerance

Logic related 
changeability

RAM related efficiency

Readability

Understandability File comment ratio > 35%

File size (LOC) < 1000

No commented-out code

Class depth-inheritence < 8

No unused variables, 
parameter or constant in 

code

If, else, for, while structures 
are bound by scope

Switch statement have a 
default condition

No use of uninitialized 
variables

Coupling between objects < 
7

No duplicate part over 100 
token

Number of parameters in a 
module call < 6

Figure 3. Hierarchical representation of the model described in TABLE I

violated source code requirement, a remediation cost (a work
unit, a monetary unit, or a time unit) is associated to make
the code conformant to the quality objective. For instance,
looking at TABLE I and Fig. 3, the remediation cost for the
requirement ”Coupling between objects (CBO) < 7” is the
cost to decrease the coupling from its current value X to 7.
The remediation cost might not be constant but expressed by
a remediation function. For example, reducing the coupling
from 13 to 7 (-6) might cost more than twofold effort of
reducing it from 10 to 7 (-3). The total refactoring cost for
a sub-characteristic is the sum of the remediation cost of
each requirement violation.
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C. Indices and Indicators

All of the SQALE indices represent the costs related
to a given characteristic, estimated by adding up all of
the remediation costs of the requirement violations of the
connected sub-characteristics. For instance, in the example
of TABLE I, the SQALE Testability Index STI is the sum of
the remediation costs of all violated requirements related to
Integration level testability and Unit testing testability, i.e.
”No duplicate part over 100 token”, ”Number of parameters
in a module call < 6”, ”Coupling between objects < 7”. The
sum of all indexes is the Software Quality Index (SQI). It is
also possible to obtain consolidated indices in the following
way: the consolidated index of a given characteristic is equal
to the sum of all the indices of the previous characteristics.
For instance, the SQALE Consolidated Reliability Index
(SCRI) is equal to STI + SRI, i.e. the sum of Testability
and Reliability indexes. Moreover, a density index has to
be associated with each absolute index dividing it by a
measure representing the size of the artifact (lines of code,
complexity, etc.). Finally the SQALE Method defines several
synthesised indicators to summarize the overall quality status
of the application: since indicators are out of the scope of the
current work, we point the reader to the SQALE document
to more detailed information.

III. TAILORING SQALE QUALITY MODEL TO INCLUDE
ENERGY EFFICIENCY

We propose to tailor the SQALE model to include Energy
Efficiency. As stated in the introduction, including Energy
Efficiency in a quality model is an important step towards
a measurable, repeatable and objective way to evaluate
and improve the Energy Efficiency of a given applica-
tion. We suggest to introduce Energy Efficiency as a sub-
characteristic related to the main characteristic ”Efficiency”.
It cannot be a characteristic itself, because it is not an activity
in the typical software lifecycle, but it is a sub-characteristic
of second type (i.e., ”a recognised taxonomy in terms of
good and bad practices relating to the software’s architecture
and coding”). The next step is to identify appropriate code
requirements that can be applied to evaluate the Energy
Efficiency of a software product. For this purpose, in this
section we propose a list of guidelines, derived from the
literature [9] [10] [11], provided as solutions to developers
in order to produce energy-efficient software. From these
guidelines, we extract a set of proper requirements to be
included in the SQALE Quality Model. Most of the guide-
lines suggested in the literature are not strictly code-related,
but rather recommending general programming techniques.
As a consequence, we selected from the original list those
requirements that can be traced to actual code structures.
These are listed in TABLE II.

Starting from the selected guidelines, we express the set
of requirements for evaluating software Energy Efficiency.

TABLE II
GUIDELINES THAT CAN BE TRANSLATED INTO SQALE REQUIREMENTS

Nr. Guideline Explanation

GD1 Decrease algorithm
complexity

Despite different algorithms can com-
plete the same task, the way the task is
performed can be totally different. Re-
ducing the algorithm complexity can
lead to save energy.

GD2 Use Event-Based pro-
gramming

Event based programming avoids a
waste of resources involved in do-
ing unnecessary operations. If polling
cannot be avoided, it is advised to
select a fair time interval.

GD3 Batch I/O Buffering I/O operations increases
Energy Efficiency; the OS can power
down I/O devices when not used.

GD4 Reduce data redun-
dancy

Storage and transportation of redun-
dant data impacts Energy Efficiency

GD5 Reduce memory leaks With memory leaks the application
can stall or crash. This unpredictable
behavior can alter the energy con-
sumption and, more generally, they
must always be avoided.

These requirements, as specified in the SQALE Model
Definition Document, [6], must be:

• Atomic
• Unambiguous
• Non-redundant
• Justifiable
• Acceptable
• Implementable
• Not in contradiction with any other requirement
• Verifiable

Our approach, in coherence with the SQALE method-
ology, is based upon translating the guidelines into code
patterns automatically detectable with static analysis tools.
We propose an estimate, basing upon the presence of
particular implementations that may cause energy waste.
Since requirements are meant by SQALE to be language-
dependant, we use the Java language as a reference in this
paper. TABLE III contains the requirements identified and
mapped to the guidelines they derive from. This is not to be
intended as an exhaustive list but a first step towards source
code Energy Efficiency quantification.

A. RQ1: Halstead’s Effort < K

Halstead’s Effort [12] is a technique for describing the
structural properties of algorithms. This metric has been se-
lected because it gives an estimation of algorithm complex-
ity, which is language-dependant, but not implementation-
dependant as other metrics commonly used in this field
(such as McCabe’s Complexity [13]). K is a parameter to
be defined according to specific application domains and
project characteristics.
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TABLE III
REQUIREMENTS FOR ENERGY EFFICIENCY

Nr. Guideline Nr. Requirement

GD1 Decrease algorithm
complexity

RQ1 Halstead’s Effort< K

GD2 Use Event-Based pro-
gramming

RQ2 Nr. of polling cy-
cles=0

GD3 Batch I/O RQ3 Nr. of FileInput-
Stream.read() method
calls = 0 [8]

GD4 Reduce data redun-
dancy

RQ4 Nr. of unused vari-
ables = 0

GD5 Reduce memory leaks
RQ5.1 Nr. of Dead Store is-

sues per class = 0
RQ5.2 Nr. of String|Boolean|

Integer|Double
constructor = 0

B. RQ2: Nr. of polling cycles = 0

To date and up to our knowledge, no static analysis tool
is able to detect polling cycle, because polling structures can
be implemented in various ways. However, we decided to
keep this requirement and to devote further work to find a
relevant metric to detect polling.

C. RQ3: Nr. of FileInputStream.read() method calls = 0

This requirement derives from a particular issue regarding
the FileInputStream.read() method, that triggers a direct call
to the underlying OS. If inserted into a cycle, it will realize
an inefficient I/O policy. The use of a BufferedReader greatly
improves performance and supposedly Energy Efficiency of
the operation [14]. For example, the code shown in Listing
1 continuously calls the read() method of a FileInputStream
object, thus triggering a large number of RPC calls to the
Operating System.

FileInputStream fis = new FileInputStream(filename]);
int cnt = 0;
int b;
while ((b = fis.read()) != −1)
{

if (b == ’\n’)
cnt++;

}
fis.close();

Listing 1. Example of inefficient I/O policy

The code shown in Listing 2 makes use of a Buffered-
InputStream, which reads larger chunks of data than the
FileInputStream. This greatly reduces Remote Procedure
Calls, which improves Energy Efficiency by allowing the
Operative System (OS) to turn off the I/O device when not
needed.

D. RQ4: Nr. of unused variables = 0

The code in Listing 3 shows an example of Unused Field
issue: the AClass contains a private field named ”b”, which

FileInputStream fis = new FileInputStream(filename);
BufferedInputStream bis = new BufferedInputStream(fis);
int cnt = 0;
int b;
while ((b = bis.read()) != −1)
{

if (b == ’\n’)
cnt++;

}
bis.close();

Listing 2. Example of efficient I/O policy

is never used (the class does not provide a get() method for
that field).

private class AClass
{

int a;
int b;

public int getA(){return a;}
}

Listing 3. Example of Unused Field

An optimization of this code would be providing a get()
method for the ”b” field, or removing the field if unneces-
sary.

E. RQ5.1: Nr. of Dead Store issues = 0

The code shown in Listing 4 contains a Dead Store issue,
which means assigning a value to a local variable which is
not read by any subsequent instruction.

public int DeadLocalStore(int x)
{

int constant a = x;
constant a = 3

return constant a + x;
}

Listing 4. Example of Dead Local Store

In the code above, x is stored to constant a but it is
overwritten in the subsequent code line. A more efficient
code is shown in Listing 5.

public int noDeadLocalStore(int x)
{

int constant a = 3;
return constant a + x;

}

Listing 5. Example of refactored Dead Local Store

The value of x is no longer stored to constant a and then
replaced.

The requirements specified above are derived from the
guidelines [11] [10] of good programming practices pro-
vided in the literature. However, it is worth mentioning that
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such guidelines, despite being intuitive and acknowledged
as effective by software industry specialists [1], did not
receive any empirical validation. For this reason, and in
order to make the choice of the above specified requirements
justifiable, an empirical validation that quantitatively assess
their impact on Energy Efficiency is needed.

The last steps in the introduction of Energy Efficiency
into SQALE are: tailoring the analysis model, tailoring the
indices and the indicators. These steps are more straightfor-
ward then the previous one. Regarding the analysis model,
a remediation function for each requirement violation ought
to be defined in order to obtain the remediation cost. An
example of remediation function for the requirement

number of dead stores > 0

could be:

10 + 2x

where x is the number of deadstores, 10 is the cost (in time
units) of running a static analysis tool to detect them and 2
is the estimated time cost to review and refactor each dead
store. We plan to estimate the remediation cost of each re-
quirement violation through controlled experiments (e.g. ob-
serving the time required by subjects for a refactoring action)
and questionnaires (i.e. asking directly to practicioners for
estimations of refactoring actions). Being Energy Efficiency
a sub-characteristic of efficiency, the sum of the remediation
costs of all its source requirements will be added to the total
cost of the other efficiency sub-characteristics, obtaining the
SQALE Efficiency Index. Finally, the indicators do not need
tailoring because they are at the highest level of the quality
model.

IV. REQUIREMENTS EMPIRICAL VALIDATION:
EXPERIMENT PLANNING AND PRELIMINARY RESULTS

As said in the previous section, the guidelines we propose
are not supported by an empirical evidence regarding their
impact on Energy Efficiency. We plan an experiment to
test whether the requirements identified in TABLE II have
a measurable impact on energy consumption. We use as
example the RQ 5.1 (dead stores) to explain the experiment
framework. In our experimentation, we set up two source
code fragments: one containing a dead store to an Integer
variable and the corresponding refactored version, function-
ally identical but without the dead store. The instrumentation
required for our experiment is a system to execute the code,
meanwhile logging power consumption data through a Data
Acquisition Board. On the software level, the infrastructure
implementing the experiment is inspired by the JUnit2 [15]
framework for automated software It consists of an abstract
class, Experiment, that can be extended by concrete experi-
mental classes. Each experimental class must provide two
methods performWithViolation() and performWithoutVio-
lation() that contain respectively the code including the

violation and with the violation refactored out. In addition
the method setUp() may be optionally redefined to prepare
for the execution. For instance, the experimental class for
the integer dead store explained in the previous section is
shown in Listing 6.

public class DLS DEAD LOCAL STORE extends Experiment
{

public int performWithViolation()
{

int constant a = x;
constant a = 3;
return constant a + x;

}

public int performWithoutViolation()
{

int constant a = 3;
return constant a + x;

}
}

Listing 6. Dead Local Store experimental class

The power consumption of the methods performWith-
Violation() and performWithoutViolation() are expected to
be very small. Unfortunately the standard measurement
methods are not able to record precisely power at order of
magnitude below microWatts. For this reason, the execution
of each method is repeated consecutively a very high number
of times (e.g. 1 million) to consume a measurable amount
of power. We assume that each execution of the measured
methods is independent on each other. This is true if no
attribute is used except those initialized in the setUp()
method.

Moreover, the framework provides the method: per-
form(int nSamples , long nIter). It takes as parameters
two integers: the number of measurement samples to be
generated (nSamples, set to 100 by default), and the number
of iterations of the perform methods (nIter, set to 1 million
by default). At the end of the experiment we will have
nSamples samples, each of them representing the execution
times of nIter iterations of both perform methods. We also
plan to have a batch of different runs of the basic experiment
carried on at different random times during the day to
compensate the possible confounding effect of periodical
tasks performed by the operating system. Finally, having the
power consumption data of the two methods, it is possible
to compare them and assess the possible impact of the
requirement violation on Energy Efficiency.

To date, we have finished the instrumentation of a Desktop
machine where to run the experiment, by means of an
electrical power meter [16], through which we will log
power consumption data during the execution of software
specifically written for our experimental purposes. We pre-
viously conducted a similar experiment on an embedded
system with a integer dead store implemented in the C
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language. Our results show the impact related to the dead
store was in the order of 20-40 picowatts per instruction.
Such a small power saving could be higher if code patterns
are executed thousands or millions of time, as it might
happen in loops. Moreover, considering devices running
on batteries, dead store have a negative impact on battery
consumption.

V. CONCLUSIONS AND FUTURE WORK

Energy efficiency is becoming a key factor in software
development, given the ubiquity of software in everyday life
and its hardware-related power consumption. Moreover, in
devices running on batteries, efficient energy consumption is
a key aspect. For this reason we propose to introduce Energy
Efficiency into the existing quality models. We selected
SQALE, whose quality model is derived from the ISO/IEC
9126 and it is strictly related to the software lifecycle
activities. We tailor SQALE inserting Energy Efficiency
as a sub-characteristics of efficiency, and we propose a
set of specific requirements for the Java language starting
from guidelines currently developed in the literature. The
requirements identified are:

• Halstead’s Effort < K
• Nr. of polling cycles = 0
• Nr. of FileInputStream.read() method calls = 0
• Nr. of dead store issues per class = 0
• Nr. of unread variables = 0
• Nr. of String|Boolean|Integer|Double constructor = 0

We identified two major challenges in requirements elicita-
tion:

1) the translation of the guidelines in measurable require-
ments, whose violations are automatically identifiable
by tools;

2) the validation of the negative impact of the require-
ments violation on energy consumption.

We are planning an experiment to empirically verify the
impact of requirements on Energy Efficiency and we pre-
sented the results of a preliminary work for an integer dead
store implemented in the C language, where we verified
that it actually causes an increase of power consumption
per instruction. Future work will be devoted to execute
the experiment to empirically validate the requirements,
estimating both their negative impact on power consumption
and the related remediation costs. We will also investigate
whether other requirements are eligible to be included in the
quality model under Energy Efficiency sub-characteristic.
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